当院の透析液清浄化に対する 試み(続報)

(医) 援腎会すずきクリニック

〇二階堂三樹夫、萩原喜代美、入谷麻祐子、鈴木翔太 鈴木一裕

目的

- 当院では開院当初から、いくつかの透析液清 浄化対策に取り組んできた。
- 国際的水質基準作成の動向からも、更なる清浄化対策が期待される中、今年試みた2つの水質検査(TOC測定、透析用水基準22項目)について報告する。

TOC測定

TOCE!

- 全有機炭素(TOC: Total Organic Carbon) 水中の酸化されうる有機物の全量を炭素の量で示したも の。有機不純物汚染の指標となる。
- ROモジュールからのリークやバイオフィルムからの遊出により高値を示す。水棲菌の栄養源になるものもある。

方法(TOC測定)

- RO水(ROモジュール通過後)を摂取し、 福島県環境検査センター株式会社:郡山 市に分析を依頼
- ■比較するため、透析液(ETRF通過前と通過後)も分析を依頼
- I. 検体を専用ボトルに500mL採取
- 2. 左図のTOC-V CPH(島津製作所製)で測定

•報告下限值: 0.3 [mg/L] •定量下限值: 0.3 [mg/L] •定量上限值: 3.0 [mg/L]

結果(TOC測定)

	[ppb]	[mg/L]
注射用水(規格)	500 [ppb] 以下	(※0.5 [mg/L] 以下)
RO水	(※300 [ppb] 以下)	0.3 [mg/L] 以下

※単位換算 I00 [ppb] ≒0.I [mg/L]

	ETRF前	ETRF後
透析液	560 [mg/L]	570 [mg/L]

ETRFを通過してもTOC値は低下しなかった(除去されない)

透析用水水質検査 22項目測定

方法(透析用水水質検査22項目)

- 当院では年に1回、貯水槽(総容量:24.5m³、有効容量:19m³)の清掃を行っている。
- 清掃後の透析用水(RO水)を「協和産業(株)分析室:須賀 川市」に分析を依頼
- 専用ボトルにRO水(ROモジュール通過後)を500mL採取した
- ※透析液清浄化ガイドライン Ver. 2.00には
 - 「(略)管理基準値はISO139598とISO/CD235009に準ずる。水質の確認は年1回以上行い、測定結果を文書で最低5年間保管する。ただし、原水の測定項目と重複する化学物質については原水中の化学物質濃度が管理目標値以下のものに限り測定を免除する」
 - 「(略)原水に水道水のみを使用する施設は基準値が担保されているとみなし水質確認を免除する」と記載

ISO:13959 (透析用水基準)

カルシウム	2 (0.1mEq/L)	mg/L	水銀	0.0002	mg/L
マグネシウム	4 (0.3mEq/L)	mg/L	セレン	0.09	mg/L
カリウム	8 (0.2mEq/L)	mg/L	銀	0.005	mg/L
ナトリウム	70 (30.mEq/L)	mg/L	アルミニウム	0.01	mg/L
アンチモン	0.006	mg/L	総塩素	0.10	mg/L
ヒ素	0.005	mg/L	銅	0.10	mg/L
バリウム	0.10	mg/L	フッ化物	0.2	mg/L
ベリリウム	0.0004	mg/L	硫酸塩	2	mg/L
カドミウム	0.001	mg/L	硝酸塩	100	mg/L
クロム	0.014	mg/L	タリウム	0.0020	mg/L
鉛	0.005	mg/L	亜鉛	0.10	mg/L

:水道局測定項目

結果(透析用水水質検査22項目)

カルシウム	2.0	mg/L未満	水銀	0.0002	mg/L未満
マグネシウム	4.0	mg/L未満	セレン	0.09	mg/L未満
カリウム	8.0	mg/L未満	銀	0.005	mg/L未満
ナトリウム	70	mg/L未満	アルミニウム	0.01	mg/L未満
アンチモン	0.006	mg/L未満	総塩素	0.10	mg/L未満
ヒ素	0.005	mg/L未満	銅	0.10	mg/L未満
バリウム	0.10	mg/L未満	フッ化物	0.2	mg/L未満
ベリリウム	*	mg/L未満	硫酸塩	2.0	mg/L未満
カドミウム	0.001	mg/L未満	硝酸塩	100	mg/L未満
クロム	0.014	mg/L未満	タリウム	*	mg/L未満
鉛	0.005	mg/L未満	亜鉛	0.10	mg/L未満

※:測定依頼できず

全ての項目において、検出感度以下だったが・・・

測定法の違い

	今回	ISO推奨検査方法
カルシウム	ICP発光分光分析法	滴定法、フレーム原子吸光法、ICP法又はイオン電極法
マグネシウム	ICP発光分光分析法	フレーム原子吸光法またはICP法
カリウム	ICP発光分光分析法	フレーム原子吸光法、炎光光度法、ICP法又はイオン電極法
ナトリウム	ICP発光分光分析法	フレーム原子吸光法、炎光光度法、ICP法又はイオン電極法
アンチモン	(水道法にて担保)	黒鉛炉原子吸光法(フレームレス)
ヒ素	水素化物発生ICP発光分光分析法	水素化合物発生原子吸光法
バリウム	ICP発光分光分析法	電気加熱炉原子吸光法(フレームレス)
ベリリウム	(測定依頼できず)	黒鉛炉原子吸光法(フレームレス)
カドミウム	ICP発光分光分析法	電気加熱炉原子吸光法(フレームレス)
クロム	ICP発光分光分析法	電気加熱炉原子吸光法(フレームレス)
鉛	ICP発光分光分析法	電気加熱炉原子吸光法(フレームレス)
水銀	還元気化原子吸光法	還元気化原子吸光法
セレン	水素化物発生ICP発光分光分析法	水素化合物発生原子吸光法又は電気加熱原子吸光法
銀	ICP発光分光分析法	電気加熱炉原子吸光法(フレームレス)
アルミニウム	ICP発光分光分析法	電気加熱炉原子吸光法(フレームレス)
総塩素	DPD比色法	DPD法
銅	ICP発光分光分析法	フレーム原子吸光法
フッ化物	ランタリーアリゼリンコンプレキソン吸光光度法	イオン電極法又はSPADNS法
硫酸塩	塩化バリウム比濁法	クロム酸バリウム吸光光度法(比濁法)
硝酸塩	イオンクロマトグラフ法	カドミウム還元法
タリウム	(測定依頼できず)	黒鉛炉原子吸光法(フレームレス)
亜鉛	ICP発光分光分析法	フレーム原子吸光法

考察

- 透析液の清浄化には、RO装置からの清浄化が重要であり、ETRFに頼った水質管理では不十分である。
- High-Flux膜やHPM膜を主に使用している施設 などでは、TOC測定の有用性が高いと考える。
- 透析用水水質検査22項目に関しては、測定法の違いから、信憑性を左右すると思われた。
- 来年以降は、推奨される測定方法を行っている検査会社に依頼することとした。

おわりに

■ RO装置では定期的なTOC測定と、TOCを 上昇させないメンテナンス(洗浄・消毒) の再構築が必要と思われた。

□「透析液水質基準確保加算」が新設され、 水質確保業務を行う臨床工学技士として、 更なる水質向上を目指していきたい。